An enhanced estimator of finite population variance using two auxiliary variables under simple random sampling

Author:

Ahmad Sohaib,Adichwal Nitesh Kumar,Aamir Muhammad,Shabbir Javid,Alsadat Najwan,Elgarhy Mohammed,Ahmad Hijaz

Abstract

AbstractIn this article, we have suggested a new improved estimator for estimation of finite population variance under simple random sampling. We use two auxiliary variables to improve the efficiency of estimator. The numerical expressions for the bias and mean square error are derived up to the first order approximation. To evaluate the efficiency of the new estimator, we conduct a numerical study using four real data sets and a simulation study. The result shows that the suggested estimator has a minimum mean square error and higher percentage relative efficiency as compared to all the existing estimators. These findings demonstrate the significance of our suggested estimator and highlight its potential applications in various fields. Theoretical and numerical analyses show that our suggested estimator outperforms all existing estimators in terms of efficiency. This demonstrates the practical value of incorporating auxiliary variables into the estimation process and the potential for future research in this area.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference30 articles.

1. Garcia, M. R. & Cebrian, A. A. Repeated substitution method: The ratio estimator for the population variance. Metrika 43(1), 101–105 (1996).

2. Upadhyaya, L. N., Singh, H. P. & Singh, S. A class of estimators for estimating the variance of the ratio estimator. J. Japan Stat. Soc. 34(1), 47–63 (2004).

3. Chandra, P. & Singh, H. P. A family of estimators for population variance using knowledge of kurtosis of an auxiliary variable in sample survey. Stat. Transit. 7(1), 27–34 (2005).

4. Arcos, A., Rueda, M., Martınez, M. D., González, S. & Roman, Y. Incorporating the auxiliary information available in variance estimation. Appl. Math. Comput. 160(2), 387–399 (2005).

5. Kadilar, C. & Cingi, H. Improvement in variance estimation in simple random sampling. Commun. Stat. Theory Methods 36(11), 2075–2081 (2007).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3