Advanced dwarf mongoose optimization for solving CEC 2011 and CEC 2017 benchmark problems

Author:

Agushaka Jeffrey O.,Akinola Olatunji,Ezugwu Absalom E.,Oyelade Olaide N.ORCID,Saha Apu K.

Abstract

This paper proposes an improvement to the dwarf mongoose optimization (DMO) algorithm called the advanced dwarf mongoose optimization (ADMO) algorithm. The improvement goal is to solve the low convergence rate limitation of the DMO. This situation arises when the initial solutions are close to the optimal global solution; the subsequent value of the alpha must be small for the DMO to converge towards a better solution. The proposed improvement incorporates other social behavior of the dwarf mongoose, namely, the predation and mound protection and the reproductive and group splitting behavior to enhance the exploration and exploitation ability of the DMO. The ADMO also modifies the lifestyle of the alpha and subordinate group and the foraging and seminomadic behavior of the DMO. The proposed ADMO was used to solve the congress on evolutionary computation (CEC) 2011 and 2017 benchmark functions, consisting of 30 classical and hybrid composite problems and 22 real-world optimization problems. The performance of the ADMO, using different performance metrics and statistical analysis, is compared with the DMO and seven other existing algorithms. In most cases, the results show that solutions achieved by the ADMO are better than the solution obtained by the existing algorithms.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference83 articles.

1. Evaluation of several initialization methods on arithmetic optimization algorithm performance;J. O. Agushaka;Journal of Intelligent Systems,2021

2. A conceptual comparison of several metaheuristic algorithms on continuous optimization problems.;A. E. Ezugwu;Neural Computing and Applications,2020

3. Metaheuristics: a comprehensive overview and classification along with bibliometric analysis.;A. E. Ezugwu;Artificial Intelligence Review,2021

4. Particle swarm optimization;J. Kennedy;In Proceedings of ICNN’95-international conference on neural networks,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3