Evaluation of several initialization methods on arithmetic optimization algorithm performance

Author:

Agushaka Jeffrey O.1,Ezugwu Absalom E.1

Affiliation:

1. School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal , King Edward Road , Pietermaritzburg , KwaZulu-Natal 3201 , South Africa

Abstract

Abstract Arithmetic optimization algorithm (AOA) is one of the recently proposed population-based metaheuristic algorithms. The algorithmic design concept of the AOA is based on the distributive behavior of arithmetic operators, namely, multiplication (M), division (D), subtraction (S), and addition (A). Being a new metaheuristic algorithm, the need for a performance evaluation of AOA is significant to the global optimization research community and specifically to nature-inspired metaheuristic enthusiasts. This article aims to evaluate the influence of the algorithm control parameters, namely, population size and the number of iterations, on the performance of the newly proposed AOA. In addition, we also investigated and validated the influence of different initialization schemes available in the literature on the performance of the AOA. Experiments were conducted using different initialization scenarios and the first is where the population size is large and the number of iterations is low. The second scenario is when the number of iterations is high, and the population size is small. Finally, when the population size and the number of iterations are similar. The numerical results from the conducted experiments showed that AOA is sensitive to the population size and requires a large population size for optimal performance. Afterward, we initialized AOA with six initialization schemes, and their performances were tested on the classical functions and the functions defined in the CEC 2020 suite. The results were presented, and their implications were discussed. Our results showed that the performance of AOA could be influenced when the solution is initialized with schemes other than default random numbers. The Beta distribution outperformed the random number distribution in all cases for both the classical and CEC 2020 functions. The performance of uniform distribution, Rayleigh distribution, Latin hypercube sampling, and Sobol low discrepancy sequence are relatively competitive with the Random number. On the basis of our experiments’ results, we recommend that a solution size of 6,000, the number of iterations of 100, and initializing the solutions with Beta distribution will lead to AOA performing optimally for scenarios considered in our experiments.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3