BinDMO: a new Binary Dwarf Mongoose Optimization algorithm on based Z-shaped, U-shaped, and taper-shaped transfer functions for CEC-2017 benchmarks

Author:

BAS Emine

Abstract

AbstractIntelligent swarm optimization algorithms have become increasingly common due to their success in solving real-world problems. Dwarf Mongoose Optimization (DMO) algorithm is a newly proposed intelligent swarm optimization algorithm in recent years. It was developed for continuous optimization problem solutions in its original paper. But real-world problems are not always problems that take continuously variable values. Real-world problems are often problems with discrete variables. Therefore, heuristic algorithms proposed for continuous optimization problems need to be updated to solve discrete optimization problems. In this study, DMO has been updated for binary optimization problems and the Binary DMO (BinDMO) algorithm has been proposed. In binary optimization, the search space consists of binary variable values. Transfer functions are often used in the conversion of continuous variable values to binary variable values. In this study, twelve different transfer functions were used (four Z-shaped, four U-shaped, and four Taper-shaped). Thus, twelve different BinDMO variations were obtained (BinDMO1, BinDMO2, …, BinDMO12). The achievements of BinDMO variations were tested on thirteen different unimodal and multimodal classical benchmark functions. The effectiveness of population sizes on the effectiveness of BinDMO was also investigated. When the results were examined, it was determined that the most successful BinDMO variation was BinDMO1 (with Z1-shaped transfer function). The most successful BinDMO variation was compared with three different binary heuristic algorithms selected from the literature (SO, PDO, and AFT) on CEC-2017 benchmark functions. According to the average results, BinDMO was the most successful binary heuristic algorithm. This has proven that BinDMO can be chosen as an alternative algorithm for binary optimization problems.

Funder

Konya Technical University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3