Statistical and machine learning approaches to predict the necessity for computed tomography in children with mild traumatic brain injury

Author:

Miyagawa TadashiORCID,Saga Marina,Sasaki Minami,Shimizu Miyuki,Yamaura Akira

Abstract

BackgroundMinor head trauma in children is a common reason for emergency department visits, but the risk of traumatic brain injury (TBI) in those children is very low. Therefore, physicians should consider the indication for computed tomography (CT) to avoid unnecessary radiation exposure to children. The purpose of this study was to statistically assess the differences between control and mild TBI (mTBI). In addition, we also investigate the feasibility of machine learning (ML) to predict the necessity of CT scans in children with mTBI.Methods and findingsThe study enrolled 1100 children under the age of 2 years to assess pre-verbal children. Other inclusion and exclusion criteria were per the PECARN study. Data such as demographics, injury details, medical history, and neurological assessment were used for statistical evaluation and creation of the ML algorithm. The number of children with clinically important TBI (ciTBI), mTBI on CT, and controls was 28, 30, and 1042, respectively. Statistical significance between the control group and clinically significant TBI requiring hospitalization (csTBI: ciTBI+mTBI on CT) was demonstrated for all nonparametric predictors except severity of the injury mechanism. The comparison between the three groups also showed significance for all predictors (p<0.05). This study showed that supervised ML for predicting the need for CT scan can be generated with 95% accuracy. It also revealed the significance of each predictor in the decision tree, especially the "days of life."ConclusionsThese results confirm the role and importance of each of the predictors mentioned in the PECARN study and show that ML could discriminate between children with csTBI and the control group.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3