A Hybrid Geometric Morphometric Deep Learning Approach for Cut and Trampling Mark Classification

Author:

Courtenay Lloyd A.ORCID,Huguet Rosa,González-Aguilera DiegoORCID,Yravedra José

Abstract

The concept of equifinality is currently one of the largest issues in taphonomy, frequently leading analysts to erroneously interpret the formation and functionality of archaeological and paleontological sites. An example of this equifinality can be found in the differentiation between anthropic cut marks and other traces on bone produced by natural agents, such as that of sedimentary abrasion and trampling. These issues are a key component in the understanding of early human evolution, yet frequently rely on qualitative features for their identification. Unfortunately, qualitative data is commonly susceptible to subjectivity, producing insecurity in research through analyst experience. The present study intends to confront these issues through a hybrid methodological approach. Here, we combine Geometric Morphometric data, 3D digital microscopy, and Deep Learning Neural Networks to provide a means of empirically classifying taphonomic traces on bone. Results obtained are able to reach over 95% classification, providing a possible means of overcoming taphonomic equifinality in the archaeological and paleontological register.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3