Artificial Intelligence in Pediatric Emergency Medicine: Applications, Challenges, and Future Perspectives

Author:

Di Sarno Lorenzo12ORCID,Caroselli Anya1,Tonin Giovanna3,Graglia Benedetta1,Pansini Valeria3,Causio Francesco Andrea24ORCID,Gatto Antonio23ORCID,Chiaretti Antonio12

Affiliation:

1. Department of Pediatrics, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy

2. The Italian Society of Artificial Intelligence in Medicine (SIIAM), 00165 Rome, Italy

3. Department of Pediatrics, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy

4. Section of Hygiene and Public Health, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy

Abstract

The dawn of Artificial intelligence (AI) in healthcare stands as a milestone in medical innovation. Different medical fields are heavily involved, and pediatric emergency medicine is no exception. We conducted a narrative review structured in two parts. The first part explores the theoretical principles of AI, providing all the necessary background to feel confident with these new state-of-the-art tools. The second part presents an informative analysis of AI models in pediatric emergencies. We examined PubMed and Cochrane Library from inception up to April 2024. Key applications include triage optimization, predictive models for traumatic brain injury assessment, and computerized sepsis prediction systems. In each of these domains, AI models outperformed standard methods. The main barriers to a widespread adoption include technological challenges, but also ethical issues, age-related differences in data interpretation, and the paucity of comprehensive datasets in the pediatric context. Future feasible research directions should address the validation of models through prospective datasets with more numerous sample sizes of patients. Furthermore, our analysis shows that it is essential to tailor AI algorithms to specific medical needs. This requires a close partnership between clinicians and developers. Building a shared knowledge platform is therefore a key step.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3