Accuracy and efficiency stereo matching network with adaptive feature modulation

Author:

Lin Sen,Zhuo XinxinORCID,Qi Baozhen

Abstract

Feature enhancement plays a crucial role in improving the quality and discriminative power of features used in matching tasks. By enhancing the informative and invariant aspects of features, the matching process becomes more robust and reliable, enabling accurate predictions even in challenging scenarios, such as occlusion and reflection in stereo matching. In this paper, we propose an end-to-end dual-dimension feature modulation network called DFMNet to address the issue of mismatches in interference areas. DFMNet utilizes dual-dimension feature modulation (DFM) to capture spatial and channel information separately. This approach enables the adaptive combination of local features with more extensive contextual information, resulting in an enhanced feature representation that is more effective in dealing with challenging scenarios. Additionally, we introduce the concept of cost filter volume (CFV) by utilizing guide weights derived from group-wise correlation. CFV aids in filtering the concatenated volume adaptively, effectively discarding redundant information, and further improving matching accuracy. To enable real-time performance, we designed a fast version named Fast-GFM. Fast-GFM employs the global feature modulation (GFM) block to enhance the feature expression ability, improving the accuracy and stereo matching robustness. The accurate DFMNet and the real-time Fast-GFM achieve state-of-the-art performance across multiple benchmarks, including Scene Flow, KITTI, ETH3D, and Middlebury. These results demonstrate the effectiveness of our proposed methods in enhancing feature representation and significantly improving matching accuracy in various stereo matching scenarios.

Funder

National Key Research and Development Program of China

Fundamental Scientific Research Projects of Higher Education Institutions of Liaoning Provincial Department of Education

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3