Abstract
Feature enhancement plays a crucial role in improving the quality and discriminative power of features used in matching tasks. By enhancing the informative and invariant aspects of features, the matching process becomes more robust and reliable, enabling accurate predictions even in challenging scenarios, such as occlusion and reflection in stereo matching. In this paper, we propose an end-to-end dual-dimension feature modulation network called DFMNet to address the issue of mismatches in interference areas. DFMNet utilizes dual-dimension feature modulation (DFM) to capture spatial and channel information separately. This approach enables the adaptive combination of local features with more extensive contextual information, resulting in an enhanced feature representation that is more effective in dealing with challenging scenarios. Additionally, we introduce the concept of cost filter volume (CFV) by utilizing guide weights derived from group-wise correlation. CFV aids in filtering the concatenated volume adaptively, effectively discarding redundant information, and further improving matching accuracy. To enable real-time performance, we designed a fast version named Fast-GFM. Fast-GFM employs the global feature modulation (GFM) block to enhance the feature expression ability, improving the accuracy and stereo matching robustness. The accurate DFMNet and the real-time Fast-GFM achieve state-of-the-art performance across multiple benchmarks, including Scene Flow, KITTI, ETH3D, and Middlebury. These results demonstrate the effectiveness of our proposed methods in enhancing feature representation and significantly improving matching accuracy in various stereo matching scenarios.
Funder
National Key Research and Development Program of China
Fundamental Scientific Research Projects of Higher Education Institutions of Liaoning Provincial Department of Education
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献