Parallax attention stereo matching network based on the improved group-wise correlation stereo network

Author:

Yu Xuefei,Gu JinanORCID,Huang Zedong,Zhang Zhijie

Abstract

Recent stereo matching methods, especially end-to-end deep stereo matching networks, have achieved remarkable performance in the fields of autonomous driving and depth sensing. However, state-of-the-art stereo algorithms, even with the deep neural network framework, still have difficulties at finding correct correspondences in near-range regions and object edge cues. To reinforce the precision of disparity prediction, in the present study, we propose a parallax attention stereo matching algorithm based on the improved group-wise correlation stereo network to learn the disparity content from a stereo correspondence, and it supports end-to-end predictions of both disparity map and edge map. Particular, we advocate for a parallax attention module in three-dimensional (disparity, height and width) level, which structure ensures high-precision estimation by improving feature expression in near-range regions. This is critical for computer vision tasks and can be utilized in several existing models to enhance their performance. Moreover, in order to making full use of the edge information learned by two-dimensional feature extraction network, we propose a novel edge detection branch and multi-featured integration cost volume. It is demonstrated that based on our model, edge detection project is conducive to improve the accuracy of disparity estimation. Our method achieves better results than previous works on both Scene Flow and KITTI datasets.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3