Abstract
The dietary habits of seals play a pivotal role in shaping management and administration policies, especially in regions with potential interactions with fisheries. Previous studies have utilized various methods, including traditional approaches, to predict seal diets by retrieving indigestible prey parts, such as calcified structures, from intestines, feces, and stomach contents. Additionally, methods evaluating nitrogen and stable isotopes of carbon have been employed. The metabolomics approach, capable of quantifying small-scale molecules in biofluids, holds promise for specifying dietary exposures and estimating disease risk. This study aimed to assess the diet composition of five seal species—Arctocephalus pusillus pusillus, Lobodon carcinophaga, Ommatophoca rossii, and Arctocephalus tropicalis 1 and 2—by analyzing stomach and colon contents collected from stranded dead seals at various locations. Metabolite concentrations in the seal stomach and colon contents were determined using Nuclear Magnetic Resonance Spectroscopy. Among the colon and stomach contents, 29 known and 8 unknown metabolites were identified. Four metabolites (alanine, fumarate, lactate, and proline) from stomach contents and one metabolite (alanine) from colon contents showed no significant differences between seal species (p>0.05). This suggests that traces of these metabolites in the stomach and colon contents may be produced by the seals’ gut microbiome or derived from other animals, possibly indicating reliance on fish caught at sea. Despite this insight, the cause of death for stranded seals remains unclear. The study highlights the need for specific and reliable biomarkers to precisely indicate dietary exposures across seal populations. Additionally, there is a call for the development of relevant metabolite and disease interaction networks to explore disease-related metabolites in seals. Ultimately, the metabolomic method employed in this study reveals potential metabolites in the stomach and colon contents of these seal species.
Funder
NRF Postgraduate Scholarships
Publisher
Public Library of Science (PLoS)
Reference69 articles.
1. The origin and evolutionary biology of pinnipeds: seals, sea lions, and walruses.;A. Berta;Annual Review of Earth and Planetary Sciences,,2018
2. Puncture performance tests reveal distinct feeding modes in pinniped teeth;C. M. Peredo;Journal of Experimental Biology,2022
3. The better to eat you with: the comparative feeding morphology of phocid seals (Pinnipedia, Phocidae).;S. S. Kienle;Journal of Anatomy,2016
4. Summer circumpolar acoustic occurrence and call rates of Ross, Ommatophoca rossii, and leopard, Hydrurga leptonyx, seals in the Southern Ocean;F. W. Shabangu;Polar Biology,2021