Deep multiple instance learning versus conventional deep single instance learning for interpretable oral cancer detection

Author:

Koriakina NadezhdaORCID,Sladoje Nataša,Bašić Vladimir,Lindblad Joakim

Abstract

The current medical standard for setting an oral cancer (OC) diagnosis is histological examination of a tissue sample taken from the oral cavity. This process is time-consuming and more invasive than an alternative approach of acquiring a brush sample followed by cytological analysis. Using a microscope, skilled cytotechnologists are able to detect changes due to malignancy; however, introducing this approach into clinical routine is associated with challenges such as a lack of resources and experts. To design a trustworthy OC detection system that can assist cytotechnologists, we are interested in deep learning based methods that can reliably detect cancer, given only per-patient labels (thereby minimizing annotation bias), and also provide information regarding which cells are most relevant for the diagnosis (thereby enabling supervision and understanding). In this study, we perform a comparison of two approaches suitable for OC detection and interpretation: (i) conventional single instance learning (SIL) approach and (ii) a modern multiple instance learning (MIL) method. To facilitate systematic evaluation of the considered approaches, we, in addition to a real OC dataset with patient-level ground truth annotations, also introduce a synthetic dataset—PAP-QMNIST. This dataset shares several properties of OC data, such as image size and large and varied number of instances per bag, and may therefore act as a proxy model of a real OC dataset, while, in contrast to OC data, it offers reliable per-instance ground truth, as defined by design. PAP-QMNIST has the additional advantage of being visually interpretable for non-experts, which simplifies analysis of the behavior of methods. For both OC and PAP-QMNIST data, we evaluate performance of the methods utilizing three different neural network architectures. Our study indicates, somewhat surprisingly, that on both synthetic and real data, the performance of the SIL approach is better or equal to the performance of the MIL approach. Visual examination by cytotechnologist indicates that the methods manage to identify cells which deviate from normality, including malignant cells as well as those suspicious for dysplasia. We share the code as open source.

Funder

VINNOVA

Vetenskapsrådet

Cancerfonden

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3