Modelling of malaria risk, rates, and trends: A spatiotemporal approach for identifying and targeting sub-national areas of high and low burden

Author:

Lubinda JailosORCID,Bi YaxinORCID,Hamainza Busiku,Haque UbydulORCID,Moore Adrian J.ORCID

Abstract

While mortality from malaria continues to decline globally, incidence rates in many countries are rising. Within countries, spatial and temporal patterns of malaria vary across communities due to many different physical and social environmental factors. To identify those areas most suitable for malaria elimination or targeted control interventions, we used Bayesian models to estimate the spatiotemporal variation of malaria risk, rates, and trends to determine areas of high or low malaria burden compared to their geographical neighbours. We present a methodology using Bayesian hierarchical models with a Markov Chain Monte Carlo (MCMC) based inference to fit a generalised linear mixed model with a conditional autoregressive structure. We modelled clusters of similar spatiotemporal trends in malaria risk, using trend functions with constrained shapes and visualised high and low burden districts using a multi-criterion index derived by combining spatiotemporal risk, rates and trends of districts in Zambia. Our results indicate that over 3 million people in Zambia live in high-burden districts with either high mortality burden or high incidence burden coupled with an increasing trend over 16 years (2000 to 2015) for all age, under-five and over-five cohorts. Approximately 1.6 million people live in high-incidence burden areas alone. Using our method, we have developed a platform that can enable malaria programs in countries like Zambia to target those high-burden areas with intensive control measures while at the same time pursue malaria elimination efforts in all other areas. Our method enhances conventional approaches and measures to identify those districts which had higher rates and increasing trends and risk. This study provides a method and a means that can help policy makers evaluate intervention impact over time and adopt appropriate geographically targeted strategies that address the issues of both high-burden areas, through intensive control approaches, and low-burden areas, via specific elimination programs.

Funder

NA

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference61 articles.

1. World Health Organization. World Malaria Report 2018 [Internet]. World Health Organization: Geneva; 2018. Available from: https://www.who.int/malaria/media/world-malaria-report-2018/en/.

2. World Health Organization. World Malaria Report 2017. World Health Organization: Geneva; 2017.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3