Climate change and malaria: some recent trends of malaria incidence rates and average annual temperature in selected sub-Saharan African countries from 2000 to 2018

Author:

Leal Filho Walter,May Julia,May Marta,Nagy Gustavo J.

Abstract

Abstract Background Malaria is still a disease of massive burden in Africa, also influenced by climate change. The fluctuations and trends of the temperature and precipitation are well-known determinant factors influencing the disease’s vectors and incidence rates. This study provides a concise account of malaria trends. It describes the association between average temperature and malaria incidence rates (IR) in nine sub-Saharan African countries: Nigeria, Ethiopia, South Africa, Kenya, Uganda, Ghana, Mozambique, Zambia and Zimbabwe. The incidence of malaria can vary both in areas where the disease is already present, and in regions where it is present in low numbers or absent. The increased vulnerability to the disease under increasing average temperatures and humidity is due to the new optimal level for vector breeding in areas where vector populations and transmission are low, and populations are sensitive due to low acquired immunity. Methods A second source trend analysis was carried out of malaria cases and incidence rates (the number of new malaria cases per 1000 population at risk per year) with data from the World Health Organization (WHO) and average annual mean temperature from 2000 to 2018 from the World Bank’s Climate Change Knowledge Portal (CCKP). Additionally, descriptive epidemiological methods were used to describe the development and trends in the selected countries. Furthermore, MS Excel was chosen for data analysis and visualization. Results Findings obtained from this article align with the recent literature, highlighting a declining trend (20–80%) of malaria IR (incidence rate) from 2000 to 2018. However, malaria IR varies considerably, with high values in Uganda, Mozambique, Nigeria and Zambia, moderate values in Ghana, Zimbabwe, and Kenya, and low values in South Africa and Ethiopia in 2018. Evidence suggests varying IRs after average temperature fluctuations in several countries (e.g., Zimbabwe, Ethiopia). Also, an inverse temperature-IR relationship occurs, the sharp decrease of IR during 2012–2014 and 2000–2003, respectively, occurred with increasing average temperatures in Ghana and Nigeria. The decreasing trends and fluctuations, partly accompanying the temperature, should result from the intervention programmes and rainfall variability. The vulnerability and changing climate could arrest the recent trends of falling IR. Conclusion Thus, malaria is still a crucial public health issue in sub-Saharan Africa, although a robust decreasing IR occurred in most studied countries.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference38 articles.

1. Ryan SJ, Lippi CA, Zermoglio F. Shifting transmission risk for malaria in Africa with climate change: a framework for planning and intervention. Malar J. 2020;19:170.

2. Masson-Delmotte V, Zhai P, Pirani A, Connors AL, Péan C, Berger S, et al. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the IPCC. Cambridge: Cambridge University Press; 2021.

3. WHO. Vector-borne diseases. Geneva: World Health Organization; 2020. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases. Accessed 13 Mar 2023.

4. Le PVV, Kumar P, Ruiz MO, Mbogo C, Muturi EJ. Predicting the direct and indirect impacts of climate change on malaria in coastal Kenya. PLoS ONE. 2019;14: e0211258.

5. Endo N, Eltahir EAB. Increased risk of malaria transmission with warming temperature in the Ethiopian highlands. Environ Res Lett. 2020;15:054006.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3