The Markov Chains to Predict Malaria Incidence and Death in Gazira State, Sudan From 2001 to 2021

Author:

Osman Mohammed Fadlelkarim BadawiORCID

Abstract

Background: Malaria is considered the most deadly and difficult parasitic disease in the world. This study aims to use Markov chains to predict the probability patterns of stability or change in malaria incidence and deaths. Methods: Markov chains were used to analyze the data on malaria incidence and deaths through the Windows Quantitative Systems for Business (WINQSB) program. Data was obtained from the Ministry of Health, Gazira State, Health Information Centre, Sudan. The data is a time series, from 2001 to 2021 per year, according to three cases of decrease, stability, and increase. A transitional matrix is built for the three cases. Results: The results revealed that the probability that malaria incidence and deaths will reach a stable state in one year and in the long run; the probability of transitioning to an increased state was 0.66 of malaria incidence; and the probability of moving to a decreased state was 0.52 of malaria deaths. Conclusion: The results show that the malaria incidence will increase and malaria deaths will decrease in the short and long run from 2022 to 2030 in Gazira State. It is necessary to reinforce means and resources for case management and to investigate the determinants of the situation. Thus, strategies are urgently needed to arrest the unacceptably high incidence and death rates. Keywords: Markov Chain, Predicting, Malaria Incidence, Malaria Death, Gazira State.

Publisher

Knowledge E DMCC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3