Elements and evolutionary determinants of genomic divergence between paired primary and metastatic tumors
-
Published:2021-03-17
Issue:3
Volume:17
Page:e1008838
-
ISSN:1553-7358
-
Container-title:PLOS Computational Biology
-
language:en
-
Short-container-title:PLoS Comput Biol
Author:
Sun RupingORCID,
Nikolakopoulos Athanasios N.ORCID
Abstract
Can metastatic-primary (M-P) genomic divergence measured from next generation sequencing reveal the natural history of metastatic dissemination? This remains an open question of utmost importance in facilitating a deeper understanding of metastatic progression, and thereby, improving its prevention. Here, we utilize mathematical and computational modeling to tackle this question as well as to provide a framework that illuminates the fundamental elements and evolutionary determinants of M-P divergence. Our framework facilitates the integration of sequencing detectability of somatic variants, and hence, paves the way towards bridging the measurable between-tumor heterogeneity with analytical modeling and interpretability. We show that the number of somatic variants of the metastatic seeding cell that are experimentally undetectable in the primary tumor, can be characterized as the path of the phylogenetic tree from the last appearing variant of the seeding cell back to the most recent detectable variant. We find that the expected length of this path is principally determined by the decay in detectability of the variants along the seeding cell’s lineage; and thus, exhibits a significant dependence on the underlying tumor growth dynamics. A striking implication of this fact, is that dissemination from an advanced detectable subclone of the primary tumor can lead to an abrupt drop in the expected measurable M-P divergence, thereby breaking the previously assumed monotonic relation between seeding time and M-P divergence. This is emphatically verified by our single cell-based spatial tumor growth simulation, where we find that M-P divergence exhibits a non-monotonic relationship with seeding time when the primary tumor grows under branched and linear evolution. On the other hand, a monotonic relationship holds when we condition on the dynamics of progressive diversification, or by restricting the seeding cells to always originate from undetectable subclones. Our results highlight the fact that a precise understanding of tumor growth dynamics is the sine qua non for exploiting M-P divergence to reconstruct the chronology of metastatic dissemination. The quantitative models presented here enable further careful evaluation of M-P divergence in association with crucial evolutionary and sequencing parameters.
Funder
Department of Laboratory Medicine and Pathology, University of Minnesota
Masonic Cancer Center, University of Minnesota
Karen Wyckoff Rein in Sarcoma Foundation
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics
Reference72 articles.
1. Quantitative evidence for early metastatic seeding in colorectal cancer;Z Hu;Nature Genetics,2019
2. Minimal functional driver gene heterogeneity among untreated metastases;JG Reiter;Science (New York, NY),2018
3. Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases;JG Reiter;Nature Genetics,2020
4. Genomic Evolution of Breast Cancer Metastasis and Relapse;LR Yates;Cancer Cell,2017
5. Cancer Genome Evolutionary Trajectories in Metastasis;NJ Birkbak;Cancer Cell,2020
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献