Elements and evolutionary determinants of genomic divergence between paired primary and metastatic tumors

Author:

Sun RupingORCID,Nikolakopoulos Athanasios N.ORCID

Abstract

Can metastatic-primary (M-P) genomic divergence measured from next generation sequencing reveal the natural history of metastatic dissemination? This remains an open question of utmost importance in facilitating a deeper understanding of metastatic progression, and thereby, improving its prevention. Here, we utilize mathematical and computational modeling to tackle this question as well as to provide a framework that illuminates the fundamental elements and evolutionary determinants of M-P divergence. Our framework facilitates the integration of sequencing detectability of somatic variants, and hence, paves the way towards bridging the measurable between-tumor heterogeneity with analytical modeling and interpretability. We show that the number of somatic variants of the metastatic seeding cell that are experimentally undetectable in the primary tumor, can be characterized as the path of the phylogenetic tree from the last appearing variant of the seeding cell back to the most recent detectable variant. We find that the expected length of this path is principally determined by the decay in detectability of the variants along the seeding cell’s lineage; and thus, exhibits a significant dependence on the underlying tumor growth dynamics. A striking implication of this fact, is that dissemination from an advanced detectable subclone of the primary tumor can lead to an abrupt drop in the expected measurable M-P divergence, thereby breaking the previously assumed monotonic relation between seeding time and M-P divergence. This is emphatically verified by our single cell-based spatial tumor growth simulation, where we find that M-P divergence exhibits a non-monotonic relationship with seeding time when the primary tumor grows under branched and linear evolution. On the other hand, a monotonic relationship holds when we condition on the dynamics of progressive diversification, or by restricting the seeding cells to always originate from undetectable subclones. Our results highlight the fact that a precise understanding of tumor growth dynamics is the sine qua non for exploiting M-P divergence to reconstruct the chronology of metastatic dissemination. The quantitative models presented here enable further careful evaluation of M-P divergence in association with crucial evolutionary and sequencing parameters.

Funder

Department of Laboratory Medicine and Pathology, University of Minnesota

Masonic Cancer Center, University of Minnesota

Karen Wyckoff Rein in Sarcoma Foundation

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference72 articles.

1. Quantitative evidence for early metastatic seeding in colorectal cancer;Z Hu;Nature Genetics,2019

2. Minimal functional driver gene heterogeneity among untreated metastases;JG Reiter;Science (New York, NY),2018

3. Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases;JG Reiter;Nature Genetics,2020

4. Genomic Evolution of Breast Cancer Metastasis and Relapse;LR Yates;Cancer Cell,2017

5. Cancer Genome Evolutionary Trajectories in Metastasis;NJ Birkbak;Cancer Cell,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3