Modeling metastatic progression from cross-sectional cancer genomics data

Author:

Rupp Kevin123,Lösch Andreas1,Hu Yanren Linda1,Nie Chenxi2,Schill Rudolf123,Klever Maren4,Pfahler Simon5,Grasedyck Lars4,Wettig Tilo5,Beerenwinkel Niko23ORCID,Spang Rainer1

Affiliation:

1. Faculty of Informatics and Data Science—Statistical Bioinformatics Group, University of Regensburg , Regensburg 93053, Germany

2. Department of Biosystems Science and Engineering, ETH Zurich , Basel 4056, Switzerland

3. SIB Swiss Institute of Bioinformatics , Basel 4056, Switzerland

4. Institute for Geometry and Applied Mathematics, RWTH Aachen , Aachen 52062, Germany

5. Faculty of Physics, University of Regensburg , Regensburg 93053, Germany

Abstract

Abstract Motivation Metastasis formation is a hallmark of cancer lethality. Yet, metastases are generally unobservable during their early stages of dissemination and spread to distant organs. Genomic datasets of matched primary tumors and metastases may offer insights into the underpinnings and the dynamics of metastasis formation. Results We present metMHN, a cancer progression model designed to deduce the joint progression of primary tumors and metastases using cross-sectional cancer genomics data. The model elucidates the statistical dependencies among genomic events, the formation of metastasis, and the clinical emergence of both primary tumors and their metastatic counterparts. metMHN enables the chronological reconstruction of mutational sequences and facilitates estimation of the timing of metastatic seeding. In a study of nearly 5000 lung adenocarcinomas, metMHN pinpointed TP53 and EGFR as mediators of metastasis formation. Furthermore, the study revealed that post-seeding adaptation is predominantly influenced by frequent copy number alterations. Availability and implementation All datasets and code are available on GitHub at https://github.com/cbg-ethz/metMHN.

Funder

Deutsche Forschungsgemeinschaft

Swiss National Science Foundation

Swiss Cancer League

Publisher

Oxford University Press (OUP)

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3