Abstract
The coronavirus disease 2019 pandemic has impacted and changed consumer behavior because of a prolonged quarantine and lockdown. This study proposed a theoretical framework to explore and define the influencing factors of online consumer purchasing behavior (OCPB) based on electronic word-of-mouth (e-WOM) data mining and analysis. Data pertaining to e-WOM were crawled from smartphone product reviews from the two most popular online shopping platforms in China, Jingdong.com and Taobao.com. Data processing aimed to filter noise and translate unstructured data from complex text reviews into structured data. The machine learning based K-means clustering method was utilized to cluster the influencing factors of OCPB. Comparing the clustering results and Kotler’s five products level, the influencing factors of OCPB were clustered around four categories: perceived emergency context, product, innovation, and function attributes. This study contributes to OCPB research by data mining and analysis that can adequately identify the influencing factors based on e-WOM. The definition and explanation of these categories may have important implications for both OCPB and e-commerce.
Funder
Henan Province Philosophy and Social Science Planning Project
Henan Key Research and Development and Promotion Special
Jiangsu Province Social Science Foundation Youth Project
Doctor Fund of Zhengzhou University of Light Industry
Publisher
Public Library of Science (PLoS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献