IRIDIUM CHEMISTRY AND ITS CATALYTIC APPLICATIONS: A BRIEF

Author:

SINGH SANTOSH BAHADUR

Abstract

Iridium is very important element among the all transition metals with highest reported oxidation state i.e. +9 in gas phase existing species IrO4+. Instead of its less reactivity, it forms number of compounds having oxidation states between -3 to +9. It is second known densest element after osmium. Till now its toxicity and environmental impact is not much more reported and thus it may be use as green element in various fields of its application. Reason behinds it’s less toxicity and environmental impact may be due to its less reactivity and solubility. Corrosion and heat resistant properties of Iridium makes it much more useful element for alloying purpose. Iridium is the member of platinum family and used as catalyst due to its variable oxidation states. Iridium(III) complexes show great catalytic activity in both the acidic and basic medium for various organic as well as inorganic chemical transformations. Catalyst may be defined as the substance which can increases the rate of reaction of a specific chemical reaction without changing its own composition. Iridium is only one reported catalyst which is able to capture the sunlight and convert it into the chemical energy. Thus, it may be used in artificial photosynthesis process to solve our future food problem. Instead of these advantage, Iridium chemistry and its catalytic activity is not much reviewed till date, therefore, present review includes a brief introduction about chemistry and catalytic application of Iridium, which proof itself a boon for beginners to start their research career  in the field of Iridium chemistry.

Publisher

GIAP Journals

Reference18 articles.

1. Livingstone S. E., The chemistry of ruthenium, rhodium, palladium, osmium, iridium and platinum in comprehensive inorganic chemistry, 1975, Pergamon Press Ltd., Headington Hill Hall, Oxford, OX3 OBW, England.

2. Reversible activation of covalent molecules by transition-metal complexes. The role of the covalent molecule

3. Identification of an iridium-containing compound with a formal oxidation state of IX

4. Blaser H.-U., Application of iridium catalysts in the fine chemicals industry in Iridium Complexes in Organic Synthesis, Edited by Oro L.A. and Carmen Claver C., 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

5. Organoiridium Complexes: Anticancer Agents and Catalysts

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3