Radical scavenging capacity, antibacterial activity, and quantum chemical aspects of the spectrophotometrically investigated iridium (III) complex with benzopyran derivative

Author:

Mohmad Masrat,Agnihotri Nivedita,Kumar Vikas,Azam Mohammad,Wabaidur Saikh Mohammad,Kamal Raj,Kumar Rakesh,Alam Mahboob,Kaviani Sadegh

Abstract

A comprehensive aqueous phase spectrophotometric study concerning the trace level determination of iridium (III) by its reaction with benzopyran-derived chromogenic reagent, 6-chloro-3-hydroxy-7-methyl-2-(2′-thienyl)-4-oxo-4H-1-benzopyran (CHMTB), is performed. The complexing reagent instantly forms a yellow complex with Ir (III) at pH 4.63, where metal is bound to the ligand in a ratio of 1:2 as deduced by Job’s continuous variations, mole ratio, and equilibrium shift methods. The complex absorbs maximally at 413–420 nm retaining its stability for up to 4 days. An optimum set of conditions have been set with respect to the parameters governing the formation of the complex. Under the set optimal conditions, the Ir (III)-CHMTB complex coheres to Beer’s law between 0.0 and 1.5 µg Ir (III) mL−1. The attenuation coefficient and Sandell’s sensitivity are, respectively, 1.18×105 L mol−1 cm−1 and 0.00162 μg cm−2 at 415 nm. The correlation coefficient (r) and standard deviation (SD) were 0.9999 and ± 0.001095, respectively, whereas the detection limit as analyzed was 0.007437 μg ml−1. The interference with respect to analytically important cations and complexing agents has been studied thoroughly. It is found that the majority of the ions/agents do not intervene with the formation of the complex, thus adding to the versatility of the method. The results obtained from the aforesaid studies indicate a simple, fast, convenient, sensitive, and versatile method for microgram analysis of iridium (III) using CHMTB as a binding ligand. Furthermore, the studied complex is subjected to the evaluation of antibacterial and antioxidant capacity by employing the Agar Diffusion assay and DPPH. radical scavenging method, respectively. The results obtained from the mentioned assays reveal that the investigated complex possesses significant potency as an antibacterial and antioxidant agent. Finally, the computational approach through DFT of the formed complex confirmed the associated electronic properties of the studied complex.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

Reference42 articles.

1. A new method for the synthesis of flavones;Algar;Proc. R. Ir. Acad.,1934

2. Density-functional thermochemistry III.The role of exact exchange;Becke;J. Chem. Phys.,1993

3. Extractive and spectrophotometric determination of Iridium (III) using 2-(5-bromo-2-oxoindolin-3-ylidene) hydrazinecarbothioamide as an analytical reagent;Borgave;J. Chem. Pharm. Res.,2016

4. Zirconium (IV)-3-hydroxy-2-tolyl-4H-chromen-4-one complex- the analytical and DFT studies;Dhonchak;J. Mol. Model.,2021

5. Spectrofluorimetric determination of iridium (IV) traces using 4-pyridone derivatives;Druskovic;Talanta,2004

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3