Crisp discharge forecasts and grey uncertainty bands using data-driven models

Author:

Alvisi S.1,Creaco E.1,Franchini M.1

Affiliation:

1. Department of Engineering, University of Ferrara, Via Saragat, 1, 44122, Ferrara, Italy

Abstract

A data-driven artificial neural network (ANN) model and a data-driven evolutionary polynomial regression (EPR) model are here used to set up two real-time crisp discharge forecasting models whose crisp parameters are estimated through the least-square criterion. In order to represent the total uncertainty of each model in performing the forecast, their parameters are then considered as grey numbers. Comparison of the results obtained through the application of the two models to a real case study shows that the crisp models based on ANN and EPR provide similar accuracy for short forecasting lead times; for long forecasting lead times, the performance of the EPR model deteriorates with respect to that of the ANN model. As regards the uncertainty bands produced by the grey formulation of the two data-driven models, it is shown that, in the ANN case, these bands are on average narrower than those obtained by using a standard technique such as the Box–Cox transformation of the errors; in the EPR case, these bands are on average larger. These results therefore suggest that the performance of a grey data-driven model depends on its inner structure and that, for the specific models here considered, the ANN is to be preferred.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3