Comparison of Different Approaches to Predict the Performance of Pumps As Turbines (PATs)

Author:

Venturini MauroORCID,Alvisi StefanoORCID,Simani SilvioORCID,Manservigi Lucrezia

Abstract

This paper deals with the comparison of different methods which can be used for the prediction of the performance curves of pumps as turbines (PATs). The considered approaches are four, i.e., one physics-based simulation model (“white box” model), two “gray box” models, which integrate theory on turbomachines with specific data correlations, and one “black box” model. More in detail, the modeling approaches are: (1) a physics-based simulation model developed by the same authors, which includes the equations for estimating head, power, and efficiency and uses loss coefficients and specific parameters; (2) a model developed by Derakhshan and Nourbakhsh, which first predicts the best efficiency point of a PAT and then reconstructs their complete characteristic curves by means of two ad hoc equations; (3) the prediction model developed by Singh and Nestmann, which predicts the complete turbine characteristics based on pump shape and size; (4) an Evolutionary Polynomial Regression model, which represents a data-driven hybrid scheme which can be used for identifying the explicit mathematical relationship between PAT and pump curves. All approaches are applied to literature data, relying on both pump and PAT performance curves of head, power, and efficiency over the entire range of operation. The experimental data were provided by Derakhshan and Nourbakhsh for four different turbomachines, working in both pump and PAT mode with specific speed values in the range 1.53–5.82. This paper provides a quantitative assessment of the predictions made by means of the considered approaches and also analyzes consistency from a physical point of view. Advantages and drawbacks of each method are also analyzed and discussed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3