Forecast-based analysis for regional water supply and demand relationship by hybrid Markov chain models: a case study of Urumqi, China

Author:

Wang B.1,Liu L.2,Huang G. H.2,Li W.2,Xie Y. L.3

Affiliation:

1. Resources and Environmental Research Academy, China-Canada Energy and Environmental Research Center, North China Electric Power University, Beijing 102206, China

2. MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206, China

3. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

A clear understanding of regional water supply and demand trend is crucial for proper water resources planning and management in water-deficient areas, especially for Northwest China. In this study, three hybrid stochastic models (Markov chain model, unbiased Grey-Markov model and Markov model based on quadratic programming) were developed separately for predicating the available water resources, water demand, and water utilization structure in Urumqi. The novelty of this study arises from the following aspects: (1) compared with other models, the developed models would provide ideal forecasting results with small samples and poor information; (2) this study synthetically took into account water supply and demand, water utilization structure trend; (3) the prediction results were expressed as interval values for reducing the forecasting risk when carrying out water resources system planning and operational decisions. Analysis of water supply and demand in Urumqi under different reuse ratios was also conducted based on the forecasting results. The results would help managers and policy-makers to have a clear understanding of regional water supply and demand trend as well as the water utilization structure in the future.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3