Affiliation:
1. School of Economics, Nankai University, Tianjin 300071, China
2. School of Mathematics and Physics, Hebei University of Engineering, Handan 056038, China
Abstract
Abstract
Water demand prediction is crucial for effective planning and management of water supply systems to handle the problem of water scarcity. Taking into account the uncertainties and imprecisions within the framework of water demand forecasting, the uncertain time series prediction method is introduced for water demand prediction. Uncertain time series is a sequence of imprecisely observed values that are characterized by uncertain variables and the corresponding uncertain autoregressive model (UAR) is employed to describe it for predicting future values. The main contributions of this paper are shown as follows. Firstly, by defining the auto-similarity of uncertain time series, the identification algorithm of UAR model order is proposed. Secondly, a new parameter estimation method based on the uncertain programming is developed. Thirdly, the imprecisely observed values are assumed as the linear uncertain variables and a ratio-based method is presented for constructing the uncertain time series. Finally, the proposed methodologies are applied to model and forecast Beijing's water demand under different confidence levels and compared with the traditional time series, i.e. ARIMA method. The experimental results are evaluated on the basis of performance criteria, which shows that the proposed method outperforms over the ARIMA method for water demand prediction.
Funder
the national natural science foundation of china
the foundation of hebei education department
Subject
Water Science and Technology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献