Long-term water demand forecasting using artificial intelligence models in the Tuojiang River basin, China

Author:

Shu Jun,Xia XinyuORCID,Han Suyue,He Zuli,Pan Ke,Liu Bin

Abstract

Accurate forecasts of water demand are a crucial factor in the strategic planning and judicious use of finite water resources within a region, underpinning sustainable socio-economic development. This study aims to compare the applicability of various artificial intelligence models for long-term water demand forecasting across different water use sectors. We utilized the Tuojiang River basin in Sichuan Province as our case study, comparing the performance of five artificial intelligence models: Genetic Algorithm optimized Back Propagation Neural Network (GA-BP), Extreme Learning Machine (ELM), Gaussian Process Regression (GPR), Support Vector Regression (SVR), and Random Forest (RF). These models were employed to predict water demand in the agricultural, industrial, domestic, and ecological sectors using actual water demand data and relevant influential factors from 2005 to 2020. Model performance was evaluated based on the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), with the most effective model used for 2025 water demand projections for each sector within the study area. Our findings reveal that the GPR model demonstrated superior results in predicting water demand for the agricultural, domestic, and ecological sectors, attaining R2 values of 0.9811, 0.9338, and 0.9142 for the respective test sets. Also, the GA-BP model performed optimally in predicting industrial water demand, with an R2 of 0.8580. The identified optimal prediction model provides a useful tool for future long-term water demand forecasting, promoting sustainable water resource management.

Funder

Sichuan Province Science and Technology Support Program

Sichuan Mineral Resources Research Center

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3