Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models
Author:
Affiliation:
1. Department of Soil and Water Engineering; College of Agricultural and Technology; Anand Agricultural University; Godhra Gujarat India
2. Department of Bioresource Engineering; McGill University; Ste Anne de Bellevue Quebec Canada
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Link
http://onlinelibrary.wiley.com/wol1/doi/10.1002/wrcr.20517/fullpdf
Reference54 articles.
1. Peak daily water demand forecast modeling using artificial neural networks;Adamowski;J. Water Resour. Plann. Manage.,2008
2. A wavelet neural network conjunction model for groundwater level forecasting;Adamowski;J. Hydrol.,2011
3. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds;Adamowski;J. Hydrol.,2010
4. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada;Adamowski;Water Resour. Res.,2012
5. Water consumption prediction of Istanbul City by using fuzzy logic approach;Altunkaynak;Water Resour. Manage.,2005
Cited by 171 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Using wavelet transform to analyze the dynamics of climatic variables; to assess the status of available water resources in Iran (1961–2020);Earth Science Informatics;2024-08-31
2. Pressure prediction of water supply network based on 1DCNN-GRU-multi-head attention;Water Supply;2024-07-31
3. Combining wavelet-enhanced feature selection and deep learning techniques for multi-step forecasting of urban water demand;Environmental Research: Infrastructure and Sustainability;2024-07-19
4. A comprehensive evaluation of the long-term trend of the basic climatic variables and the net water available (NWA) index in Iran during the period from 1960 to 2020;2024-06-12
5. Long-term water demand forecasting using artificial intelligence models in the Tuojiang River basin, China;PLOS ONE;2024-05-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3