Hourly water demand forecasting using a hybrid model based on mind evolutionary algorithm

Author:

Huang Haidong1ORCID,Zhang Zhixiong1,Lin Zhenliang1,Liu Shitong1

Affiliation:

1. College of Civil Engineering and Architecture, Beibu Gulf University, Qinzhou, Guangxi 535011, China

Abstract

Abstract A hybrid model based on the mind evolutionary algorithm is proposed to predict hourly water demand. In the hybrid model, hourly water demand data are first reconstructed to generate appropriate samples so as to represent the characteristics of time series effectively. Then, the mind evolutionary algorithm is integrated into a back propagation neural network (BPNN) to improve prediction performance. To investigate the application potential of the proposed model in hourly water demand forecasting, real hourly water demand data were applied to evaluate its prediction performance. In addition, the performance of the proposed model was compared with a traditional BPNN model and another hybrid model where the genetic algorithm (GA) is used as an optimization algorithm for BPNN. The results show that the proposed model has a satisfactory prediction performance in hourly water demand forecasting. On the whole, the proposed model outperforms all other models involved in the comparisons in both prediction accuracy and stability. These findings suggest that the proposed model can be a novel and effective tool for hourly water demand forecasting.

Funder

Beibu Gulf University

middle-aged and young teachers' basic ability promotion project of guangxi

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3