Short-term water demand prediction based on decomposition technique optimization and a multihead attention mechanism

Author:

Huang Haidong1ORCID,Wu Meiqiong1ORCID

Affiliation:

1. 1 School of Civil Engineering and Architecture, Guangxi Vocational College of Water Resources and Electric Power, Nanning, Guangxi 530105, China

Abstract

ABSTRACT Short-term water demand prediction is crucial for real-time optimal scheduling and leakage control in water distribution systems. This paper proposes a new deep learning-based method for short-term water demand prediction. The proposed method consists of four main parts: the variational mode decomposition method, the golden jackal optimization algorithm, the multihead attention mechanism, and the bidirectional gated recurrent unit (BiGRU) model. Furthermore, a seq2seq strategy was adopted for multistep prediction to avoid the error accumulation problem. Hourly water demand data collected from a real-world water distribution system were applied to investigate the potential of the proposed method. The results show that the proposed method can yield remarkably accurate and stable forecasts in single-step prediction (i.e., the mean absolute percentage error (MAPE) reaches 0.45%, and the root mean squared error (RMSE) is 25 m3/h). Moreover, the proposed method still achieves credible performance in 24-step prediction (i.e., the MAPE reaches 2.12%, and the RMSE is 126 m3/h). In general, for both single-step prediction and multistep prediction, the proposed method consistently outperforms other BiGRU-based methods. These findings suggest that the proposed method can provide a reliable alternative for short-term water demand prediction.

Funder

Middle-aged and Young Teachers' Basic Ability Promotion Project of Guangxi

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3