Forecast of regional water demand based on NSGAII-FORAGM

Author:

Li Jun1,Liu Chunye1,Tang Li2

Affiliation:

1. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China

2. School of business administration, Nanchang Institute of Technology, Nanchang 330000, China

Abstract

Abstract Regional water demand is an important basic data for regional engineering planning, design and management. Making full use of multi-source data and prior knowledge to quickly and economically obtain high-precision regional water demand is of great significance to the optimal allocation of regional water resources. In order to accurately predict the regional water demand, this study took Yulin City as a research area to predict the water demand of the city from 2017 to 2019. Aiming at the oscillating characteristics of the regional water demand sequence and the over-fitting problem of traditional prediction models, this study proposed the non-dominated sorting genetic algorithm II-fractional order reverse accumulative grey model (NSGAII-FORAGM). The regional water demand oscillation sequence was transformed into a monotonically decreasing non-negative sequence. Based on the transformation sequence, an optimization model was constructed according to the two objective functions of ‘maximum (or minimum) order’ and ‘best fit to historical data’, and the NSGAII method was adopted to solve the model. The three model structures of ‘fractional order’, ‘reverse accumulation’ and ‘obtaining order through multi-objective optimization model ‘ were tested based on the water use sequence of the three sectors (industry, tertiary industry and domestic) in Yulin City, and the performance of the method is compared with NSGAII-IORAGM, NSGAII-FOFAGM and SOGA-FORAGM. The results showed that the average relative error of the model established in this study for the simulation of industry, tertiary industry (the tertiary industry is a technical name for the service sector of the economy, which encompasses a wide range of businesses), and domestic was 15.54%, 11.20%, 9.98% respectively. The average relative error of the model established in this study for the prediction of industry, tertiary industry and domestic was 9.46%, 7.9%, and 1.8%, respectively. For the simulation of water demand sequences in three sections, the simulation average relative errors of the other three models were not absolutely dominant except for the SOGA-FORAGM model. The average relative predicted error by the model in this study was the smallest (the relative errors of the three sequence predictions for industry, tertiary industry and domestic were lower than the relative errors of the optimal results of the comparison model, which were 0.97%, 0.72% and 4.5%, respectively), indicating that the model had certain applicability for the water demand prediction of various sectors (industry, tertiary industry and domestic) in the region compared with other models, and can improve the accuracy of the prediction results.

Funder

Postgraduate education Innovation project of Shanxi province

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference38 articles.

1. Overview, comparative assessment and recommendations of forecasting models for short-term water demand prediction;Water,2017

2. A multivariate econometric approach for domestic water demand modeling: an application to Kathmandu, Nepal;Water Resources Management,2007

3. Forecasting residential water consumption in California: rethinking model selection;Water Resources Research,2020

4. Grey new information GOM(1,1) model based on opposite-direction accumulated generating and its application;Applied Mechanics and Materials,2013

5. Rank regression in stability analysis;Journal of Biopharmaceutical Statistics,2003

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3