Urban Water Consumption Prediction Based on CPMBNIP
Author:
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s11269-023-03601-1.pdf
Reference54 articles.
1. Amin MM, Dorra EM, Hosny OA (2023) Optimization of Urban Water Consumption in Residential Buildings. Sustainability 15(10):7952
2. Amos A, Yskandar H, Adnan AM, Ezio T (2017) Overview, comparative assessment and recommendations of forecasting models for short-term water demand prediction. Water 9(11):887
3. Ashu AB, Lee SI (2021) The effects of climate change on the reuse of agricultural drainage water in irrigation. KSCE J Civ Eng 25(3):1116–1129. https://doi.org/10.1007/s12205-021-0004-2
4. Bai Y, Wang P, Li C, Xie JJ, Wang Y (2014) A multi-scale relevance vector regression approach for daily urban water demand forecasting. J Hydrol 517:236–245. https://doi.org/10.1016/j.jhydrol.2014.05.033
5. Bata MH, Carriveau R, Ting DSK (2020) Short-term water demand forecasting using nonlinear autoregressive artificial neural networks. J Water Resour Plan Manag 146(3):04020008. https://doi.org/10.1061/(asce)wr.1943-5452.0001165
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A new single multiplicative neuron model artificial neural network based on black hole optimization algorithm: forecasting the amounts of clean water given to metropolis;Stochastic Environmental Research and Risk Assessment;2024-08-29
2. From Pressure to Water Consumption: Exploiting High-Resolution Pressure Data to Investigate the End Uses of Water;Water Resources Management;2024-05-27
3. Urban Water Demand Prediction Based on Attention Mechanism Graph Convolutional Network-Long Short-Term Memory;Water;2024-03-13
4. An enhanced method for automated end-use classification of household water data;Journal of Hydroinformatics;2024-02-01
5. Prediction of Daily Water Consumption in Residential Areas Based on Meteorologic Conditions—Applying Gradient Boosting Regression Tree Algorithm;Water;2023-09-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3