Forecasting China's water use peak path under coordinating perspective from economic development and technological progress

Author:

Zhou Qin1ORCID,Zhang Hengquan1,Zhang Chenjun2,Fang Zhou1ORCID,Cheng Changgao1

Affiliation:

1. Business School Hohai University Nanjing Jiangsu Province China

2. School of Economics and Management Jiangsu University of Science and Technology Zhenjiang Jiangsu Province China

Abstract

AbstractChina holds the distinction of being the foremost global consumer of water resources and contends with a significant level of water scarcity. In light of this quandary, China has been assiduously endeavoring to foster water conservation practices with the ultimate objective of reaching a peak point in water use. In this paper, we construct a framework for forecasting China's total water use (TWU) peak path. In this framework, we select influencing factors in terms of both economy and technology to forecast the peak path of China's TWU under six different scenarios, and analyze the economic and technological circumstances at the peak. Our findings indicate that China's TWU will persist in its upward trend based on both the high growth and business as usual scenarios. The projected peak period is estimated to transpire in 2037, 2032, 2030, and 2028, respectively, with the corresponding peak levels amounting to 644.03, 633.93, 625.79, and 620.92 billion m3. However, in the low growth scenarios, China's TWU reached its peak in 2013. The extent of economic development plays a pivotal role in determining the timing and manner of water usage peaking. Early peaking of water usage could potentially result in a loss of gross domestic product (GDP). Furthermore, technological advancements hold the potential to facilitate a reduction in water use without requiring a significant trade‐off between resource conservation and economic development. The results of sensitivity analysis show that the average acreage of water used for irrigation on cropland, GDP, water use efficiency, and population contribute the most to TWU, while the increase in the proportion of industrial, service, and water‐saving irrigation area can reduce water use. Our analytical framework provides a commonly applicable solution for the water use forecast in areas seeking to reach the water use peak or to achieve sustainable development.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3