Integrated water management under climate change through the application of the WEAP model in a Mediterranean arid region

Author:

Hadri Abdessamad1ORCID,Saidi Mohamed El Mehdi1,El Khalki El Mahdi12,Aachrine Brahim3,Saouabe Tarik1,Elmaki Abdeslam Ait4

Affiliation:

1. a Georesources, Geoenvironment and Civil Engineering Laboratory, Faculty of Sciences and Technics, Cadi Ayyad University, Marrakesh, Morocco

2. b International Water Research Institute, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco

3. c Ressources Ingénierie Consultancy Firm, Marrakesh, Morocco

4. d Process and Environmental Engineering Laboratory, Faculty of Sciences and Technics, Hassan II University, Mohammedia, Morocco

Abstract

Abstract This research aims at establishing an integrated modelling framework to assess the impact of climate change on water supply and demand across an arid area in the western Haouz plain in Morocco. Five general circulation models (GCMs) are used to evaluate the availability of future water resources under Representative Concentration Pathways (RCP4.5 and RCP8.5 emission scenarios). The projected crop water demand and irrigation water demand were analysed using the Aquacrop software, taking into account the impact of climate change on both reference evapotranspiration and crop cycle lengths. The future water balance is simulated by means of the Water Evaluation And Planning (WEAP) tool, including several socio-economic and land use scenarios under RCP4.5 and RCP8.5 scenarios. The results reveal an important decrease in net precipitation with an average of −36.2% and −50.5% under RCP4.5 and RCP8.5 scenarios, respectively. In terms of water balance, the ‘business as usual’ scenario would lead to an increasing unmet water demand of about +22% in the 2050 horizon and to an increased depletion of the water table that could reach 2 m/year. Changing water management and use practices remains the only solution to ensure sustainable water use and deal with the projected water scarcity.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3