A deep learning technique-based automatic monitoring method for experimental urban road inundation

Author:

Han Hao1,Hou Jingming1,Bai Ganggang1,Li Bingyao1,Wang Tian1,Li Xuan1,Gao Xujun2,Su Feng2,Wang Zhaofeng3,Liang Qiuhua4,Gong Jiahui1

Affiliation:

1. State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, No. 5 Jinhua Road, Xi’ an 710048, Shaanxi, China

2. Power Construction Corporation of China, Northwest Engineering Corporation Limited, Xi’ an 710065, Shaanxi, China

3. Qingyang Municipal Housing and Urban and Rural Construction Bureau, Qingyang 74500, Gansu, China

4. School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, UK

Abstract

Abstract Reports indicate that high-cost, insecurity, and difficulty in complex environments hinder the traditional urban road inundation monitoring approach. This work proposed an automatic monitoring method for experimental urban road inundation based on the YOLOv2 deep learning framework. The proposed method is an affordable, secure, with high accuracy rates in urban road inundation evaluation. The automatic detection of experimental urban road inundation was carried out under both dry and wet conditions on roads in the study area with a scale of a few m2. The validation average accuracy rate of the model was high with 90.1% inundation detection, while its training average accuracy rate was 96.1%. This indicated that the model has effective performance with high detection accuracy and recognition ability. Besides, the inundated water area of the experimental inundation region and the real road inundation region in the images was computed, showing that the relative errors of the measured area and the computed area were less than 20%. The results indicated that the proposed method can provide reliable inundation area evaluation. Therefore, our findings provide an effective guide in the management of urban floods and urban flood-warning, as well as systematic validation data for hydrologic and hydrodynamic models.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3