Spatial variability of the parameters of soil-water characteristic curves in gravel-mulched fields

Author:

Zhao Wenju1,Cao Taohong1,Li Zongli2,Su Yu1,Bao Zhiwei1

Affiliation:

1. College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China

2. General Institute for Water Resources and Hydropower Planning and Design, Ministry of Water Resources, Beijing 100120, China

Abstract

Abstract Knowledge of the soil-water characteristic curve (SWCC) and its spatial variability is essential for many agricultural, environmental, and engineering applications. We analyzed the spatial variability of the parameters of SWCC in gravel-mulched fields using classical statistics and geostatistical methods. Soil samples were collected from the layer in 64 evenly distributed 1 × 1 m quadrats 4 m apart, center to center. SWCC in the gravel-mulched fields could be fitted well by both the van Genuchten and Brooks–Corey models, but the fit was better with the van Genuchten model. The type of fitting three parameters was tested. The model parameters θs and n of each type of soil were weakly variable, and α was moderately variable. The results indicate that the gravel-mulched field has better water retention, and the water retention effect of the new gravel-mulched fields is most obvious. The spatial variation of the parameters in SWCC can therefore be used to infer soil hydraulic properties, which is important for simplifying the calculation of SWCC and quantitatively determining the retention of soil water and for managing the capacity of soil to retain water in gravel-mulched fields in arid regions.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference39 articles.

1. Relative permeability calculations from pore size distribution data;Petr. Trans. Am. Inst. Mining Metall. Eng.,1953

2. An integrated high-capacity tensiometer for measuring water retention curves continuously;Soil Sci. Soc. Am. J.,2015

3. Characteristic curves and model analysis of soil moisture in collapse mound profiles in Southeast Hubei;Acta Pedol. Sin.,2016

4. Hydraulic conductivity estimation for soils with heterogeneus pore structure;Water Resour. Res.,1994

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3