Prediction of soil water characteristic curves based on low suction section and inflection point

Author:

Zhao Wenju1ORCID,Ma Feng1,Hu Jiazhen1,Shi Fuyuan1,Wang Yali1

Affiliation:

1. 1 College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

Abstract Given the cumbersome determination method of the Soil Water Characteristic Curve (SWCC), the collapsible loess (silty clay loam) in Lanzhou was taken as the research object to explore a symmetrical prediction method for SWCC in a low suction section on the inflection point, and to determine the optimal suction section and the inflection point. The results showed that in the range of 0–7,000 cm suction, the spatial variation coefficient (CV) of soil saturation of each bulk density increased with the increase of suction. Soil saturation showed weak spatial variability when suction <800 cm, and moderate spatial variability when suction ≥800 cm. Using a bulk density of 1.58 g/cm3 as an example, the SWCC determined by the symmetry of the bending point was compared with the measured data of 0–300, 0–500, 0–800 and 0–1,000 cm suction sections. It was found that the measured soil saturation of SWCC determined by the data for the 0–800 cm suction section was the most consistent with the predicted value. The measured and predicted saturation points of the SWCC were most consistent with suction segments of 0–800 cm. SWCC data of different textures and bulk density were used to verify the prediction method at low suction section and an inflection point of 0–800 cm. It was found that the average absolute error and root mean square error of statistical indicators were close to 0, and the correlation coefficient was greater than 0.9915. The actual and predicted values of each soil parameter were linearly correlated. This method of predicting SWCCs with low suction and inflection points ensures both a high degree of curve fitting and the accuracy of characteristic soil parameters, providing a simple method for the prediction of SWCCs and guidance for managing soil water in loessial areas.

Funder

national natural science foundation of china

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3