Assessing the effects of agricultural waste returning on soil moisture characteristics

Author:

Yu Haiying123,Zhao Wenju12ORCID,Ma Feng12,Zeng Kai12,Ma Fangfang12

Affiliation:

1. College of Energy and Power Engineering Lanzhou University of Technology Lanzhou China

2. Key Laboratory of Smart Agriculture and Water‐saving Irrigation Equipment Ministry of Agriculture and Rural Affairs Lanzhou China

3. College of Civil Engineering Hexi University Zhangye China

Abstract

AbstractAgricultural waste is an emerging and promising resource due to its abundant organic compounds and high water‐holding capacity. It plays a crucial role in improving soil water use efficiency and contributing to sustainable agricultural development. This study aimed to investigate the impact of returning agricultural waste on soil moisture characteristics. Different volume ratios (4:5:1:0, 3:5:1:1, 2:5:1:2, 1:5:1:3, and 0:5:1:4) of agricultural waste blend (AWB) consisting of cattle manure, yellow loam soil, wheat straw, and distiller's grains were examined, and the water‐holding performance of the five AWB ratios under various suction forces was compared. The analysis confirmed the suitability of the Van Genuchten‐Mualem model for fitting soil moisture characteristic curves at different ratios. The study also examined the influences of AWB ratios on soil‐specific water capacity, hydraulic parameters, and equivalent pore size. The results showed that agricultural waste effectively increased soil‐specific water capacity, available water content, soil WHC(Water‐holding capacity), and soil pore count. Furthermore, reducing cattle manure and increasing distiller's grains enhanced these effects. For instance, when the AWB ratio was 0:5:1:4, soil‐specific water capacity increased by 47.7%, while field WHC and available water content increased by 9.9% and 3.8%, respectively. Additionally, the number of extremely small and small pores increased by 1.4% and 0.77%, respectively. These findings provide valuable theoretical guidance for agricultural waste treatment and improving soil WHC. Based on the results, it is recommended to increase the proportion of distiller's grains and reduce organic fertilizer when using agricultural waste for improving soil WHC.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Environmental Science,Waste Management and Disposal,Water Science and Technology,General Chemical Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3