A two-stage multiple-point conceptual model to predict river stage-discharge process using machine learning approaches

Author:

Alizadeh Farhad1,Faregh Gharamaleki Alireza1,Jalilzadeh Rasoul1

Affiliation:

1. East Azerbaijan Regional Water Company, Tabriz, East Azerbaijan, Iran

Abstract

Abstract Due to the complex nature of river stage-discharge process, the present study tried to develop a unique strategy to predict it precisely. The proposed conceptual strategy has some advantages to cover the shortcomings. First, it uses one model instead of several models to predict multiple points instead of one point. On the one hand, the constructed model was inspired by physical-based model (to include time-space attributes of the catchment). On the other hand, ensemble empirical mode decomposition algorithm (EEMD), wavelet transform (WT), and mutual information (MI) were employed as a hybrid pre-processing approach conjugated to support vector machine. For this end, a conceptual strategy (multi-station model) was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. First, a classic model along with WT was performed to predict the 1-day-ahead river discharge for each single station. Therefore DWT-EEMD and feature selection were used for decomposed subseries using MI to be employed in conceptual models. In the proposed feature selection method, some useless subseries were deleted to achieve better performance. The results approved efficiency of the proposed WT-EEMD-MI approach to improve accuracy of different modeling strategies.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3