An Improved Index-Velocity Method for Calculating Discharge in Meandering Rivers

Author:

Liang Kaiyan1ORCID,Li Zili1

Affiliation:

1. School of Electronics and Information Engineering, Guangxi Normal University, Guilin 541000, China

Abstract

Accurately measuring river flow is not only crucial for hydrologists monitoring hydrological processes but also important for all professionals involved in hydrological research. The ultrahigh frequency (UHF) band enables the surface flow velocity measurement at a deeper effective water depth, so it is less susceptible to the influence of wind drift. However, in curved river channels, the spatial variation in surface velocity is caused by the uneven erosion of the water flow, and this variation is influenced by both air shear stress and the curvature of the river. To mitigate the impact of water level on cross-sectional flow velocity estimation and address the nonlinear relationship between cross-sectional area and water level, this paper proposes a model that is independent of river water level. The nonlinear relationship between cross-sectional area and water level is calculated using a Taylor series expansion. The model was validated using experimental data collected from the Xiantao section of the Han River in Hubei, China, from March to July 2018. The data were discussed separately for high-flow and low-flow periods and were divided into training and validation sets in an 8:2 ratio. Compared to the previous method, our improved method reduces the Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) by approximately 2%. In the estimation of flow during the dry season, the improved method achieved a correlation coefficient of 0.9523, representing an increase of 0.1243 compared to the original method. The RMSE was 23.0383, and the MAPE was 0.0232, showing reductions of 23.144 and 0.0241, respectively, compared to the original method. In the estimation of discharge during the wet season, the improved method achieved a correlation coefficient of 0.9908, an increase of 0.0575 compared to the original method. The RMSE was 65.4929, and the MAPE was 0.0391, reflecting reductions of 75.1271 and 0.0338, respectively, compared to the original method. This advancement further enhances the application of UHF radar for discharge measurement in meandering rivers.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Publisher

MDPI AG

Reference33 articles.

1. Relationships among nutrient and sediment fluxes, hydrological variability, fire, and land cover in coastal California catchments;Aguilera;J. Geophys. Res. Biogeosci.,2018

2. Global extent of rivers and streams;Allen;Science,2018

3. Multimodel estimate of the global terrestrial water balance: Setup and first results;Haddel;J. Hydrometeorol.,2011

4. Non-contact discharge estimation at a river site by using only the maximum surface flow velocity;Vyas;J. Hydrol.,2024

5. Fulford, J.M., Thibodeaux, K.G., and Kaehrle, W.R. (1994, January 1–5). Comparison of current meters used for stream gaging. Proceedings of the Symposium on Fundamentals and Advancements in Hydraulic Measurements and Experimentation, Buffalo, NY, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3