Modeling stage‐discharge and sediment‐discharge relationships in data‐scarce Himalayan River Basin Dhauliganga, Central Himalaya, using neural networks

Author:

Rautela Kuldeep Singh1ORCID,Gupta Vivek2,Devi Juna Probha3,Majeed Lone Rafiya4,Kuniyal Jagdish Chandra1ORCID

Affiliation:

1. Centre for Environmental Assessment & Climate Change G.B. Pant National Institute of Himalayan Environment (NIHE) Kosi‐Katarmal Almora Uttarakhand India

2. Department of Civil Engineering Indian Institute of Technology Indore Madhya Pradesh India

3. Centre for the Environment Indian Institute of Technology Guwahati Guwahati Assam India

4. Department of Life Sciences Vivekananda Global University Jaipur Rajasthan India

Abstract

AbstractThis study focuses on the hydro‐sedimentological characterization and modeling of the Dhauliganga River in Uttarakhand, India. Field data collected from 2018–2020, including stage, velocity, and suspended sediment concentration (SSC), showed notable variations influenced by melting snow, glaciers, and precipitation. Challenges in accurately modeling rivers with a topography and sparse gauging stations were addressed using artificial neural networks (ANN). The calibrated models precisely predicted stage‐discharge and sediment‐discharge relationships, demonstrating the effectiveness of machine learning, particularly ANN‐based modeling, in such challenging terrains. The model's performance was assessed using coefficient of determination (R2), root mean square error (RMSE), and mean square error (MSE). During the calibration phase, the model exhibited notable performance with R2 values of 0.96 for discharge and 0.63 for SSC, accompanied by low RMSE values of 5.29 cu m s–1 for discharge and 0.61 g for SSC. Subsequently, in the prediction phase, the model maintained its robustness, achieving R2 values of 0.97 for discharge and 0.63 for SSC, along with RMSE values of 5.67 cu m s–1 for discharge and 0.68 g for SSC. The study also found a strong agreement between water flow estimates derived from traditional methods, ANN, and actual measurements. The suspended sediment load, influenced by both water flow and SSC, varied annually, potentially modifying aquatic habitats through sediment deposition, and altering aquatic communities. These findings offer crucial insights into the hydro‐sedimentological dynamics of the studied river, providing valuable applications for sustainable water‐resource management in challenging terrains and addressing environmental concerns related to sedimentation, water quality, and aquatic ecosystem.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3