Application of artificial neural network for predicting water levels in Hooghly estuary, India

Author:

Bhar Kalyan Kumar1,Bakshi Susmita2

Affiliation:

1. Department of Civil Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India

2. Department of Civil Engineering, Meghnad Saha Institute of Technology, Kolkata 700150, West Bengal, India

Abstract

Abstract Hydrodynamic models for morphodynamic studies in estuaries require continuous tidal water level data as boundary conditions. However, for the Hooghly estuary in India, measurement of continuous tidal water elevation data at the most downstream point is a very difficult task because of the remote location and the confluence with the deep sea. The tidal water level data at this station are measured for a half tidal cycle which is not useful for hydrodynamic modeling. However, at other upstream stations, tide water level data are measured continuously. Accordingly, in this study, an attempt is made to generate continuous tidal water level data at the remote station, using the data of the neighboring stations as input to an artificial neural network (ANN) model. A three-layered feed-forward backpropagation (FFBP) network with two hidden layers is selected and five different combinations of input vectors are used. Simulated water level data obtained from each model are compared with the observed data graphically as well as by estimating the standard error parameters. The best model suitable for prediction of continuous tidal elevation during any time of the tidal cycle and applicable throughout the year is then identified. It is found that tidal data from the nearest neighboring station are more suitable for training.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Environmental Science (miscellaneous),Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3