Accurate Liquid Level Measurement with Minimal Error: A Chaotic Observer Approach

Author:

Shenoy Vighnesh12,Shenoy Prathvi3,Venkata Santhosh Krishnan1ORCID

Affiliation:

1. Department of Instrumentation & Control Engg, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

2. Department of Artificial Intelligence and Data Science/Machine Learning, Shri Madhwa Vadiraja Institute of Technology and Management, Bantakal 574115, India

3. Department of Electrical & Electronics Engg, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

Abstract

This paper delves into precisely measuring liquid levels using a specific methodology with diverse real-world applications such as process optimization, quality control, fault detection and diagnosis, etc. It demonstrates the process of liquid level measurement by employing a chaotic observer, which senses multiple variables within a system. A three-dimensional computational fluid dynamics (CFD) model is meticulously created using ANSYS to explore the laminar flow characteristics of liquids comprehensively. The methodology integrates the system identification technique to formulate a third-order state–space model that characterizes the system. Based on this mathematical model, we develop estimators inspired by Lorenz and Rossler’s principles to gauge the liquid level under specified liquid temperature, density, inlet velocity, and sensor placement conditions. The estimated results are compared with those of an artificial neural network (ANN) model. These ANN models learn and adapt to the patterns and features in data and catch non-linear relationships between input and output variables. The accuracy and error minimization of the developed model are confirmed through a thorough validation process. Experimental setups are employed to ensure the reliability and precision of the estimation results, thereby underscoring the robustness of our liquid-level measurement methodology. In summary, this study helps to estimate unmeasured states using the available measurements, which is essential for understanding and controlling the behavior of a system. It helps improve the performance and robustness of control systems, enhance fault detection capabilities, and contribute to dynamic systems’ overall efficiency and reliability.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3