Synthesis of neural network structure for the analysis of complex structured ocular fundus images

Author:

Tatarkanov Aslan,Alexandrov Islam,Glashev Rasul

Abstract

This paper proposes an algorithm for synthesizing a neural network (NN) structure to analyze complex structured, low entropy, ocular fundus images, characterized by iterative tuning of the adaptive model's solver modules. This algorithm will assist in synthesizing models of NNs that meet the predetermined characteristics of the classification quality. The relevance of automating the process of ocular diagnostics of fundus pathologies is due to the need to develop domestic medical decision-making systems. Because of using the developed algorithm, the NN structure is synthesized, which will include two solver modules, and is intended to classify the dual-alternative information. Automated hybrid NN structures for intelligent segmentation of complex structured, low entropy, retinal images should provide increased efficiency of ocular diagnostics of fundus pathologies, reduce the burden on specialists, and decrease the negative impact of the human factor in diagnosis.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3