Drought forecasting using W-ARIMA model with standardized precipitation index

Author:

Rezaiy Reza1ORCID,Shabri Ani1

Affiliation:

1. 1 Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia (UTM), UTM Johor Bahru 81310, Malaysia

Abstract

Abstract Climate change and water supply shortages are paramount global concerns. Drought, a complex and often underestimated phenomenon, profoundly affects various aspects of human life. Thus, early drought forecasting is crucial for strategic planning and water resource management. This study introduces a novel hybrid model, combining wavelet transform with the Autoregressive Integrated Moving Average (ARIMA) model, known as Wavelet ARIMA (W-ARIMA), to enhance drought prediction accuracy. We meticulously analyze monthly precipitation data from January 1970 to December 2019 in Kabul, Afghanistan, focusing on multiple time scales (SPI 3, SPI 6, SPI 9, SPI 12). Comparative assessment against the conventional ARIMA approach reveals the superior performance of our W-ARIMA model. Key statistical indicators, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), underscore the improvements achieved by the W-ARIMA model, notably in SPI 12 forecasting. Additionally, we evaluate performance using metrics like R-square, NSE, PBIAS, and KGE, consistently demonstrating the W-ARIMA model's superiority. This substantial enhancement highlights the innovative model's clear superiority in drought forecasting for Kabul, Afghanistan. Our research underscores the critical significance of this hybrid model in addressing the challenges posed by drought within the broader context of climate change and water resource management.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3