Application of Artificial Intelligence to Forecast Drought Index for the Mekong Delta

Author:

Ha Duong Hai1,Duc Phong Nguyen1,Luong Thuan Ha2,Duc Thang Tang3,Ngoc Thang Trinh1,Minh Tien Nguyen1,Minh Tu Nguyen1

Affiliation:

1. Institute for Water and Environment, Vietnam Academy for Water Resources, Hanoi 100000, Vietnam

2. Vietnam Water Resources Association, Hanoi 100000, Vietnam

3. The Southern Institute of Water Resources Research, Vietnam Academy for Water Resources, Ho Chi Minh 700000, Vietnam

Abstract

Droughts have a substantial impact on water supplies, agriculture, and ecosystems worldwide. Agricultural sustainability and production in the Mekong Delta of Vietnam are being jeopardized by droughts caused by climate change. Conventional forecasting methods frequently struggle to comprehend the intricate dynamics of meteorological occurrences connected to drought, necessitating the use of sophisticated prediction techniques. This study assesses the effectiveness of various statistical models (ARIMA), machine learning, and deep learning models (Gradient Boosting, XGBoost, RNN, and LSTM) in forecasting the SPEI over different time periods (1, 3, 6, and 12 months) across six prediction intervals. The models were developed and evaluated using data from 11 meteorological stations spanning from 1985 to 2022. These models incorporated various climatic variables, including precipitation, temperature, humidity, potential evapotranspiration (PET), Southern Oscillation Index (SOI) Anomaly, and sea surface temperature in the NINO4 region (SST_NINO4). The results demonstrate that XGBoost and LSTM models exhibit outstanding performance, showcasing lower error metrics and higher R² values compared to Gradient Boosting and RNN. The performance of the model fluctuated depending on the forecast step, with error metrics often increasing with longer prediction horizons. The use of climatic indices improved the accuracy of the model. These findings are consistent with earlier research on drought episodes in the Mekong Delta and support studies from other areas that show the effectiveness of advanced modeling tools for predicting droughts. The work emphasizes the capacity of machine learning and deep learning models to enhance the precision of drought forecasting, which is vital for efficient water resource management and agricultural planning in places prone to drought.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3