Application of machine learning models in assessing the hydrological changes under climate change in the transboundary 3S River Basin

Author:

Nguyen Quyen1,Shrestha Sangam1ORCID,Ghimire Suwas1,Sundaram S. Mohana1,Xue Wenchao2,Virdis Salvatore G. P.3,Maharjan Manisha4

Affiliation:

1. a Water Engineering and Management, School of Engineering and Technology, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand

2. b Environmental Engineering Management, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand

3. c Remote Sensing and Geographic Information System, School of Engineering and Technology, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand

4. d Center of Research for Environment, Energy and Water, Baluwatar, Kathmandu, Nepal

Abstract

Abstract This paper aims to evaluate two machine learning (ML) algorithms, namely, convolutional neural network (CNN) and long short-term memories (LSTM) deep learning algorithms, to predict the hydrological regime of the 3S River Basin under various climate change scenarios. Climate models CMCC-CMS, HadGEM-AO2, and MIROC5 were used to predict future climate and streamflow for three future periods: near-future (2020–2050), mid-future (2050–2080), and far-future (2080–2100) under two Representative Concentration Pathways (RCPs) 4.5 and 8.5. The future projection shows an increase in mean annual temperature from 0.08 to 4.3 °C by CMCC-CMS, from 0.13 to 4.4 °C by HadGEM-AO2, and −0.07 to 4.2 °C MIROC5 models. Similarly, the annual precipitation is projected to fluctuate from 13.3 to 62.5% by CMCC-CMS, from −12.4 to 26.1% by HadGEM-AO2, and from 6.9 to 49% by the MIROC5 model. The 3S River Basin expects an increasing trend in streamflow in the Srepok and Sesan Rivers, while the Sekong is projected to have reduced streamflow. ML models predicted the increasing flood risk in the Sekong and Sesan catchments with the increase of the Q5 index in the future but a decrease in the Srepok.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3