Optimization of pumping schedule based on water demand forecasting using a combined model of autoregressive integrated moving average and exponential smoothing
Author:
Affiliation:
1. Hyundai Engineering Co, Ltd, Hyundai BLDG. 75, Yulgok-ro Jongno-gu, Seoul, 110-920 Korea
2. Department of Energy and Environmental System Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 130-743 Korea
Abstract
Publisher
IWA Publishing
Subject
Water Science and Technology
Link
http://iwaponline.com/ws/article-pdf/15/1/188/414811/ws015010188.pdf
Reference21 articles.
1. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada;Adamowski;Water Resources Research,2012
2. An algorithm for minimization of pumping costs in water distribution systems using a novel approach to pump scheduling;Bagirov;Mathematical and Computer Modelling,2013
3. Barry J. A. 2007 WATERGY: Energy and water efficiency in municipal water supply and wastewater treatment. Report USAID/01.07, WATERGY Program, US Agency for International Development (USAID), Washington, DC, USA.
4. Optimal pump scheduling for large scale water transmission system by linear programming;Błaszczyk;Journal of Telecommunications & Information Technology,2012
5. On the optimal design of water distribution networks: a practical MINLP approach;Bragalli;Optimization and Engineering,2012
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing accuracy and interpretability of multi-steps water demand prediction through prior knowledge integration in neural network architecture;Water Research X;2024-09
2. Water Pump Operation Optimization under Dynamic Market and Consumer Behaviour;The 15th ACM International Conference on Future and Sustainable Energy Systems;2024-05-31
3. Long-term water demand forecasting using artificial intelligence models in the Tuojiang River basin, China;PLOS ONE;2024-05-22
4. Water consumption time series forecasting in urban centers using deep neural networks;Applied Water Science;2024-01-12
5. Urban Water Consumption Prediction Based on CPMBNIP;Water Resources Management;2023-09-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3