Living Boundaries: Tracking Weed Seed Movement With Nondormant Seed

Author:

Davis Adam S.,Luschei Edward C.

Abstract

Synthetic seed banks are a useful tool for tracking how weed populations change over time. By sowing a known number of seeds of a given species within a quadrat with defined boundaries, an investigator can measure the number remaining and thereby calculate demographic rates (e.g., mortality). The alternative is to use in situ seeds and estimate their initial population density via sampling. To make a synthetic seed bank approach useful within an agricultural system subjected to soil disturbances such as tillage, one would need a way to account for seeds leaving the initial quadrat (i.e., a way to follow how the area encompassing the sown seeds changes over time). Without accounting for the change in location/extent of the synthetic seed bank, any field operation moving soil will create additional uncertainty in population size. Depending on the “aggressiveness” of specific field operations and the initial size of the quadrat, this effect might be negligible or so large as to be intractable. Here, we describe a method for following a synthetic seed bank over time using a “living boundary” of nondormant seeds, which effectively play the role of tracers used in the study of dynamics in other scientific disciplines. Study quadrats in East Lansing, MI, and Arlington, WI, were sown with giant foxtail and velvetleaf at a rate of 2,000 seeds m−2. The study quadrats were marked on the perimeter and diagonals using nondormant seeds of three marker species: kale, radish, and rye. The areas were then subjected to tillage and planting operations. Spatial coordinates of seedling locations for the marker and weed species were obtained through digital image processing. A nonparametric comparison of the spatial displacement of marker and weed species indicated that their empirical spatial distributions did not differ. The marker species quadrats described by the 50th, 90th, and 99th quantiles of movement contained all velvetleaf seedlings in Wisconsin, all velvetleaf seedlings in Michigan, and all giant foxtail seedlings in Michigan, respectively. The results suggest a simple rule for applying the method to field demography studies: after the original quadrat is deformed and seedlings have emerged, flag the polygon containing all marker seedlings to obtain the expanded quadrat containing the study weed population.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference16 articles.

1. ESRI Software, 380 New York Street, Redlands, CA 92373.

2. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110.

3. A comparison of methods to predict weed seedling populations from the soil seedbank;Cardina;Weed Sci.,1996

4. USING MATRIX MODELS TO DETERMINE CROPPING SYSTEM EFFECTS ON ANNUAL WEED DEMOGRAPHY

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3