Suitability of Passive Integrated Transponder (PIT) Tags for Tracking Weed Seed Movement in Soils

Author:

Wilson David W.,Sbatella Gustavo M.,Wang QiQi,Miller Stephen D.

Abstract

Information linking seed movement, along with changes in seed viability, is critical for understanding weed seed dynamics. Studies were conducted to examine the use of passive integrated transponder (PIT) tags placed in nylon mesh packets in combination with GPS (Global Positioning System) technology to track weed seed movement after tillage. Cylindrical PIT tags 11.5, 12, 20, and 23 mm long by 2 mm wide were evaluated in water and soil. Detection improved as tag size increased because of greater signal strength. Tags with the main axis oriented vertically were recovered at greater depths than when placed horizontally. Average detection depths for 12-mm PIT tags were 29.5 cm in water, 18.2 cm in sand, 24 cm in artificial soil, and 21.2 cm in sandy loam soil. Tests also showed that PIT tags and nylon mesh packets were resilient to intense tillage with a rototiller. No significant differences in displacement because of tillage were observed between free PIT tags and PIT-tagged packets. PIT tag performance was further tested in a 2-yr field experiment conducted between September 2003 and October 2005 at six sites in Nebraska and Wyoming. Tilled and no-till blocks were established at each site. PIT-tagged packets in the tilled block and untagged packets in the no-till block were used. Sample burial depths were 0, 2.5, 7.5, and 15 cm. Sample recovery rate did not differ between tilled and no-till blocks. Time of recovery was the main factor affecting recovery of packets buried at 0 and 2.5 cm in both blocks. Seed predation by small rodents and movement of samples beyond the area of study by tillage implements were the main sources of packet loss. Nevertheless, 2 yr after initiation of the study, more than 85% of the samples were recovered. Future development of PIT tag technology will lead to an enhanced ability to monitor seed movement.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3