A Comparison of Methods to Predict Weed Seedling Populations from the Soil Seedbank

Author:

Cardina John,Sparrow Denise H.

Abstract

Accurate prediction of potential weed seedling density would allow growers to implement control measures more effectively and could help avoid inappropriate and over application of preemergence herbicides. We compared three methods for handling soil samples to predict potential weed seedling emergence in plow-disk and no-tillage corn: seedling emergence from greenhouse trays, emergence from intact cores, and seed extraction following sieving. Seedbank numbers were highest for common lambsquarters followed by annual grasses and redroot pigweed, and seed numbers were higher in no-tillage than plow-disk plots. Coefficients of variation typically exceeded 60%. Density of seedling emergence from cores was more similar to field density than was emergence from trays. The percent of seeds in the seedbank that emerged was commonly more than 90% for annual grasses and usually less than 20% for common lambsquarters. All methods gave equivalent and relatively poor predictions of field population density. Spearman rank correlation between predicted and actual populations ranged from low negative values for common lambsquarters in no-tillage to 0.60 for annual grass emergence from trays in 1991. No method consistently gave highest correlations in both years and both tillage systems. Seedling emergence from intact cores, evaluated for 4 yr in plow-disk and no-tillage soybean fields, was significantly correlated (rs= 0.15 to 0.68) with emergence in the field. Pooling data from three to five neighboring sample sites increased the correlation between core and field emergence densities.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3