Abstract
This article presents a low power consumption, high speed multiplier, based on a lowest transistor count novel structure when compared with other traditional multipliers. The proposed structure utilizes 4×4-bit adder units, since it is the base structure of digital multipliers. The main merits of this multiplier design are that: it has the least adder unit count; ultra-low power consumption and the fastest propagation delay in comparison with other gate implementations. The figures demonstrate that the proposed structure consumes 32% less power than using the bypassing Ripple Carry Array (RCA) implementation. Moreover, its propagation delay and adder units count are respectively about 31% and 8.5% lower than the implementation using the bypassing RCA multiplier. All of these simulations were carried out using the HSPICE circuit simulation software in 0.18 μm technology at 1.8 V supply voltage. The proposed design is thus highly suitable in low power drain and high-speed arithmetic electronic circuit applications.
Publisher
International Association for Educators and Researchers (IAER)
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Optimized 4*4 Braun Multiplier for Parallel Processing Architectures with a 3-bit KSA Adder;2023 International Conference on Intelligent Technologies for Sustainable Electric and Communications Systems (iTech SECOM);2023-12-18