Bioinformatics analysis of microRNAs related to blood stasis syndrome in diabetes mellitus patients

Author:

Chen Ruixue1,Chen Minghao2,Xiao Ya1,Liang Qiuer1,Cai Yunfei1,Chen Liguo1,Fang Meixia3

Affiliation:

1. School of Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China

2. Reproductive Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong 511400, China

3. Institute of Laboratory Animals, Jinan University, Guangzhou, Guangdong 510632, China

Abstract

In traditional Chinese medicine (TCM), blood stasis syndrome (BSS) is mainly manifested by the increase of blood viscosity, platelet adhesion rate and aggregation, and the change of microcirculation, resulting in vascular endothelial injury. It is an important factor in the development of diabetes mellitus (DM). The aim of the present study was to screen out the potential candidate microRNAs (miRNAs) in DM patients with BSS by high-throughput sequencing (HTS) and bioinformatics analysis. Human umbilical vein endothelial cells (HUVECs) were incubated with 10% human serum to establish models of DM with BSS, DM without BSS (NBS), and normal control (NC). Total RNA of each sample was extracted and sequenced by the Hiseq2000 platform. Differentially expressed miRNAs (DE-miRNAs) were screened between samples and compared with known changes in mRNA abundance. Target genes of miRNAs were predicted by softwares. Gene Ontology (GO) and pathway enrichment analysis of the target genes were conducted. According to the significantly enriched GO annotations and pathways (P-value ≤ 0.001), we selected the key miRNAs of DM with BSS. It showed that the number of DE-miRNAs in BSS was 32 compared with non-blood stasis syndrome (NBS) and NC. The potential candidate miRNAs were chosen from GO annotations in which target genes were significantly enriched (−log10 (P-value) > 5), which included miR-140-5p, miR-210, miR-362-5p, miR-590-3p, and miR-671-3p. The present study screened out the potential candidate miRNAs in DM patients with BSS by HTS and bioinformatics analysis. The miRNAs will be helpful to provide valuable suggestions on clinical studies of DM with BSS at the gene level.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Reference49 articles.

1. Update of mortality attributable to diabetes for the IDF Diabetes Atlas: estimates for the year 2013;International Diabetes Federation;Diabetes Res. Clin. Pract.,2015

2. MicroRNAs in stress signaling and human disease;Mendell;Cell,2012

3. Study on TCM syndrome differentiation and treatment of diabetes mellitus;Zhu;Shanghai Trad. Chin. Med.,1982

4. Identification of more objective biomarkers for Blood-Stasis syndrome diagnosis;Liao;BMC Complement Altern. Med.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3